Genetic Studies of Peanut Proteins and Oils

Y.P. TAI and CLYDE T. YOUNG, Department of Food Science, University of Georgia,
Georgia Station, Experiment, Georgia 30212

Abstract

Six peanut cultivars (Chico, Argentine, Tennessee Red, Florunner, F334A-B-14, and Florida Jumbo) and their F_{2} seed populations were used to determine the inheritance of protein and oil contents. The results suggested that both protein and oil contents were quantitatively inherited. Calculated correlation coefficients between protein and oil contents were negative and varied from nonsignificant to highly significant in both parental and F_{2} populations. Three F_{2} populations, F334x Tennessee Red, Florida Jumbo x Chico, and F334x Argentine, plus their parents were studied for genetic behavior of amino acid and fatty acid compositions. The results indicate that these traits also were inherited quantitatively, and the peanuts had the capacity to give a transgressive segregation with some of the amino acids and fatty acids. Correlations among 18 amino acids plus 8 fatty acids suggested a complex system of genetic control a mong amino acid and fatty acid compositions within each of the peanut cultivars and their F_{2} progenies.

INTRODUCTION

The peanut (Arachis hypogaea L.) has a relatively high protein content and is an important source of plant protein for human consumption. Holley and Hammons (1) reported differences in protein and oil among genotypes, and Young and Hammons (2) reported a range of 22.7-29.3\% protein among 105 genotypes of peanuts. Protein levels varied significantly among individual seeds from a plant which produced peanuts with a range from mature to immature (3). Considerable variation in amino acid composition of peanut meal among cultivars has been reported $(4,5)$. No inheritance studies of protein content or amino acid composition of peanuts have been reported.

Worthington and Hammons (6) studied the genotypic variation in fatty acid composition and stability of A. hypogaea L . oil and found that linoleic acid varied among genotypes from ca. $14-40 \%$. In general, the large seeded Virginia (subsp. hypogaea) cultivars were lower while the Spanish (subsp. fastigiata var. vulgaris) types were higher in linoleic acid. Worthington, et al., (7) reported that the ranges in fatty acid levels (each expressed as \% total fatty acids) among 82 genotypes was: palmitic (16:0) 7.4-12.9\%, stearic (18:0) 1.6-5.3\%, oleic ($18: 1$) 35.7-68.5\%, linoleic (18:2) $14.0-40.3 \%$, arachidic (20:0) 0.9-2.2\%, eicosenoic (20:1) $0.6-2.0 \%$, behenic (22:0) 1.3-5.1\%, and lignoceric (24:0) $0.6-2.0 \%$. Holley and Hammons (1) and Worthington and

Hammons (6) found a strong negative correlation ($\mathrm{r}=-.99$) between $18: 1$ and $18: 2$, significant positive correlations between 18:2 and 16:0, 22:0 and 24:0, and a negative correlation between 18:2 and 18:0.

Tai (8) and Tai, et al., (9) investigated the inheritance of oleic:linoleic ($\mathrm{O}: \mathrm{L}$) acid ratio in peanuts and found that the cultivars varied widely. They reported that there was no consistent evidence to support a hypothesis of maternal influence on the $\mathrm{O}: \mathrm{L}$ ratio in peanuts, and that inheritance of the $\mathrm{O}: \mathrm{L}$ ratio is controlled by quantitative genes.

Holley and Hammons (1) reported a tendency for high protein strains to be low in oil, and vice versa, but exceptions were common enough in 26 strains to invalidate an absolute reciprocal relationship between oil and protein. In fat free peanut meals, 18 amino acids were found (4), but of the 7 essential amino acids, only leucine and phenylalanine were nutritionally adequate in all cultivars examined.

The objectives of this study were to investigate the inheritance of protein and oil contents of peanuts and of their amino acid and fatty acid compositions as a basis for improving the nutritional value and oil quality of peanuts. The quantitative relationships among the 18 amino acids and the 8 fatty acids also were examined.

MATERIALS AND METHODS

Six peanut cultivars, representing three botanical varieties and 4 commercial types (Table I), were studied. Both Tennessee Red (TR) and Florida Jumbo (FJ) were reported to have high protein and high lysine content (4). Argentine (AR) had a moderately high content of protein and lysine, whereas, both Chico (CH) and Florunner (FR) had relatively low protein content. F334A-B-14 had the lowest protein content among these 6 cultivars. According to Worthington (R.E. Worthington, unpublished data, 1972), Florida Jumbo had the highest oleic acid (66.0%) and lowest linoleic acid content (16.6%), whereas, F334 had the lowest oleic acid (41.4%) and highest linoleic acid content (39.8%) among these 6 cultivars. The oleic and linoleic acid content of the other 4 cultivars were between those of F334 and Florida Jumbo.

All possible reciprocal infraspecific crosses were attempted by hand pollination among these 6 cultivars in the early spring of 1973 , but F_{1} seeds were obtained in 11 combinations only (Tables II and III). Because most of the F_{1} seeds were not fully matured, chemical analysis of these seeds could not be conducted. The F_{1} plants were field grown at the USDA Plant Introduction Station at Experi-

TABLE I
Peanut (Arachis hypogaea L.) Cultivars Selected for Genetic Studies of Protein and Oil Content

Cultivar	Code	Botanical subspecies and variety	U.S. commercial type
Tennessee Red	TR	fastigiata - fastigiata	Valencia
F334A-B-14a	F334	hypogaea	Runner
Chicob	CH	fastigiata vulgaris	Spanish
Argentine	AR	fastigiata vulgaris	Spanish
Florunner	FR	hypogaea	Runner
Florida Jumbo		FJ	hypogaea - hypogaea

[^0]TABLE II
Frequency Distributions and Statistical Summary of Protein of Parents and F_{2} 's from Single Seeded Analyses and Heritability (H) ${ }^{\text {a }}$

Population ${ }^{\text {b }}$	Class centers (\%)								$n^{\text {c }}$	Mean \pm s.d.	H
	21.0	23.0	25.0	27.0	29.0	31.0	33.0	35.0			
Parents											
CH			1	6	4	3	1		15	28.72 ± 2.16	-
AR				2	3	6	1		12	30.18 ± 1.80	-
TR			2	5	4	1			12	27.91 ± 1.79	-
F334		1	4	4	2				11	26.54 ± 1.91	-
FR	1	3	3	3					10	24.60 ± 2.17	-
FJ			3	6	7	4			20	28.04 ± 1.86	-
Pooled	1	4	13	26	20	14	2		80	27.75 ± 2.49	-
F_{2} generation											
CHx AR				8	19	6	3		36	$29.23 \mathrm{~d} \pm 1.82$	0
AR x CH				5	16	10	4		35	$29.89{ }^{\text {d }} \pm 1.81$	0
CH \times F334			1	6	12	11	5		35	$29.74{ }^{\text {e }} \pm 2.02$	0
CH $\times \mathrm{FJ}$			8	7	6	6	8		35	$28.93^{\mathrm{e}} \pm 2.91$	53
$\mathrm{FJ} \times \mathrm{CH}$		1	2	8	6	8	9		34	$29.76{ }^{\mathrm{e}}+2.80$	44
AR \times FR		2	1	5	10	9	6	3	36	$29.87^{\mathrm{e}} \pm 2.89$	53
FJ \times AR		1	3	11	8	10	3		36	$28.84{ }^{\text {e }} \pm 2.51$	47
F334 x TR		1	3	21	23	17	7		72	$28.94{ }^{\text {d }} \pm 2.12$	24
F334 x AR	1	5	7	8	5	6	2		34	$27.21{ }^{\mathrm{e}} \pm 3.21$	67
FR \times CH	3	2	7	6					18	$24.98{ }^{\text {e }} \pm 2.27$	10
CH x F334		1	2	5	9	2	1		20	$28.20^{\mathrm{e}} \pm 2.33$	35
Pooled	4	13	34	90	114	85	48	3	391	28.88 ± 2.70	-

$\mathrm{a}_{\mathrm{H}}=\left(\left[\mathrm{VF}_{2}-\left(\mathrm{VP}_{1} \cdot \mathrm{VP}_{2}\right)^{1 / 2}\right] / \mathrm{VF}_{2}\right) \times 100$.
${ }^{\mathrm{b}} \mathrm{CH}=$ Chico $; \mathrm{AR}=$ Argentine $; \mathrm{TR}=$ Tennessee Red $; \mathrm{FR}=$ Florunner $; \mathrm{FJ}=$ Florida Jumbo.
$c_{n}=$ Number.
${ }^{\mathrm{d}}$ Not significantly different from mean of either parent $(\mathrm{P}>0.05)$.
eSignificantly different from mean of 1 parent ($\mathrm{P}<0.05$).

TABLE III
Frequency Distributions and Statistical Summary of Oil Content of Parents and F_{2} 's from Single Seeded Analyses,
Heritability (H), and Correlation Coefficients (r) between Protein and Oil

Population ${ }^{\text {a }}$	Class center (\%)										$\mathrm{n}^{\text {b }}$	Mean \pm s.d.	H	r
	41	43	45	47	49	51	53	55	57	59				
Parents														
CH				3	3	4	2	2	1		15	51.11 ± 3.11	-	-.655 ${ }^{\text {f }}$
AR	1			2	2	2	5				12	50.03 ± 3.48	-	-.623 ${ }^{\text {f }}$
TR		1			4	2	5				12	50.55 ± 2.71	-	-.822g
F334					1	5	2	3			11	52.38 ± 2.22	-	-.652 ${ }^{\text {f }}$
FR					1	4	4		1		10	52.39 ± 2.15	-	-. 412
FJ	1	2	5	6	4	2					20	46.72 ± 2.64	-	-. 587
Pooled	2	3	5	111	15	19	18	5	2		80	50.00 ± 3.47	-	
F_{2} generation														
$\mathrm{CH} \times \mathrm{AR}$			2	3	10	12	8	1			36	$50.41^{\mathrm{c}} \pm 2.37$	0	-.621g
AR \times CH			1	4	4	14	8	3		1	35	$51.14{ }^{\mathrm{c}} \pm 2.71$	0	-.522g
CH \times F334				3	4	15	8	4	1		35	$51.44 \mathrm{c} \pm 2.34$	0	-.465g
CH $\times \mathrm{FJ}$			2	6	7	3	11	5	1		35	$50.93{ }^{\text {d }} \pm 3.14$	17	-.7368
FJ $\times \mathrm{CH}$	1		1	1	4	8	8	7	4		34	$51.96{ }^{\text {d }} \pm 3.50$	33	$-.660{ }^{\text {g }}$
AR x FR			1	2	5	7	13	6	2		36	$52.07 \mathrm{~d} \pm 2.60$	0	-. 364 f
FJ \times AR		1	1	3	8	11	6	4	2		36	$50.91 \mathrm{~d} \pm 3.07$	3	-. 5558 s
F334 x TR	2	3	13	19	18	14	3				72	$47.64 \mathrm{e} \pm 2.72$	19	-. 184
F334 x AR			3	10	9	6	3	3			34	$49.29^{\mathrm{d}} \pm 2.83$	4	-.423 ${ }^{\text {f }}$
FR x CH				2	5	7	2	2			18	$50.67{ }^{\text {c }} \pm 2.23$	0	-.748g
FJ \times F334		1		1	3	11	3	1			20	$50.46{ }^{\text {d }} \pm 2.52$	0	-. 177
Pooled	3	5	24	54	77	108	73	36	10	1	391	50.42 ± 3.12	--	

${ }^{\mathrm{a}} \mathrm{CH}=$ Chico; $\mathrm{AR}=$ Argentine $; \mathrm{TR}=$ Tennessee $\mathrm{Red} ; \mathrm{FR}=$ Florunner $; \mathrm{FJ}=$ Florida Jumbo.
$\mathrm{b}_{\mathrm{n}}=$ Number.
${ }^{\mathrm{c}}$ Nonsignificantly different from mean of either parent ($\mathrm{P}>0.05$).
$d_{\text {Significantly }}$ different from mean of 1 parent ($P<0.05$).

$\mathrm{f}(\mathrm{P}<0.05)$.
$\left.\mathrm{g}_{(\mathrm{P}}<0.01\right)$.
ment, Georgia, in 1973. At harvest, fruits were dried under forced air at room temperature, hand shelled, and fully matured seeds were selected for chemical analyses.

The samples for chemical analyses were on an individual seed basis (3). The dried peanut seeds were crushed with a glass pestle and extracted with diethyl ether. The extracted oil was dried and weighed. Fat free peanut meals were used for the determination of protein by the macro-Kjeldahl
method (10). Percent protein was calculated as \% nitrogen x 5.46 (11,12). Both oil and protein contents were calculated to whole peanut on an oven dry basis.

Three F_{2} populations, F334 x TR, FJ x CH and F334 x AR , and their parents were selected for studies of the amino acid and fatty acid compositions. Due to technical difficulties, only 30 individual seeds from each F_{2} population and 10 individual seeds of each of the parents were
TABLE IV

Population ${ }^{\text {h }}$		Class center (\%)										Mean \pm s.d.
Threonine (Thr)	2.575	2.625	2.675	2.725	2.775	2.825	2.875	2.925	2.975			
TR			2	5	2	1						$2.73 b c \pm .05$ $2.83 \mathrm{e} \pm .03$
F334					2	5	3					$2.83 \mathrm{e} \pm .03$
CH			2	5	3							$2.74 \mathrm{bc} \pm .04$
AR			3	3	3	1						$2.74 \mathrm{bc} \pm .05$
FJ	2	2	6									$2.65 \mathrm{a} \pm .05$
F334 x TR			3	10	13	4						$2.75 \mathrm{c} \pm .04$
FJ x CH	4	5	7	3	8	2	1					$2.71 \mathrm{~b} \pm .08$
F334 \times AR			1	8	11	7	2		1			$2.79 \mathrm{~d} \pm .06$
Pooled	6	7	24	34	42	20	6	0	1			$2.47 \pm .16$
Cystine (Cys)	0.65	0.75	0.85	0.95	1.05	1.15	1.25	1.35				
TR		1	2		2	3	2					$1.06 \mathrm{c} \pm .16$
F334	2	2	3	2	1							. $84 \mathrm{a} \pm .13$
CH		1	4	4	1							. $91 \mathrm{ab} \pm .08$
AR	2	2	4		2							.83a $\pm .13$
FJ		1	3	4		2						.96abc $\pm .11$
F334 x TR		2		9	6	3	4	2				$1.02 \mathrm{bc} \pm .16$
FJ x CH	1	6	4	10	4	3	2					. $94 \mathrm{ab} \pm .16$
F334 x AR	2	1	8	11	3		1					. $95 \mathrm{abc} \pm .14$
Pooled	7	16	32	40	19	15	9	2				. $94 \pm .25$
Valine (Val)	3.55	3.65	3.75	3.85	3.95	4.05	4.15	4.25	4.35	4.45	4.55	
TR			1	1	1	3	1	2	1			$4.09 \mathrm{de} \pm .17$
F334					1	3	1	2	3			$4.18 \mathrm{ef} \pm .13$
CH			4	1	1	3	1					$3.92 \mathrm{bc} \pm .16$
AR		2	2	1	3	2						$3.87 \mathrm{~b} \pm .15$
FJ	4	2	3	1								$3.66 \mathrm{a} \pm .12$
F334 x TR			4	13	10	3						$3.90 \mathrm{~b} \pm .10$
$\mathrm{FJ} \times \mathrm{CH}$		3	3	1	7	5	5	3	1		2	$4.03 \mathrm{~cd} \pm .24$
F334 x AR				1	4		3	11	8	3		$4.24 \mathrm{f} \pm .15$
Pooled	4	7	17	19	27	19	11	18	13	3	2	$3.99 \pm .34$
Methionine (Met)	0.65	0.75	0.85	0.95	1.05	1.15	1.25	1.35	1.45			
TR				3	4	2	1					$1.06 \mathrm{c} \pm .08$
F334					6	4						$1.08 c^{ \pm} \pm .06$
CH			3	4	2	1						. $97 \mathrm{~b} \pm .08$
AR		6	4									.83a $\pm .11$
FJ		3	4	3								.85a $\pm .09$
F334 x TR				1	7	13	8	1				$1.16 \mathrm{~d} \pm .07$
$\mathrm{FJ} \times \mathrm{CH}$			1	3	12	5	7	1	1			$1.12 \mathrm{~cd} \pm .12$
F334 x AR			1	A	7	16	2					$1.10 \mathrm{c} \pm .08$
Pooled	0	9	13	18	38	41	18	2	1			$1.02 \pm .34$

(continued from page 379)

Isoleucine (Ile)	2.75	2.85	2.95	3.05	3.15	3.25	3.35						
TR			1	2	3	3	1						3.18de $\pm .12$
F334				2	3	4	1						$3.19 \mathrm{e} \pm .09$
CH			5	2	3								$3.03 \mathrm{bc} \pm .10$
AR	1		4	3		1							$3.01 \mathrm{~b} \pm .12$
FJ	4	3	2	1									$2.87 \mathrm{a} \pm .10$
F334 x TR			12	15	3								$3.01 \mathrm{~b} \pm .12$
FJ \times CH	1	1	4	11	6	4	3						$3.10 \mathrm{~cd} \pm .14$
F334 x AR	1	3	7	10	9								$3.22 \mathrm{e} \pm .11$
Pooled	7	7	35	46	28	12	5						$3.08 \pm .31$
Leucine (leu)	5.675	5.725	5.775	5.825	5.875	5.925	5.975	6.025	6.075	6.125	6.175	6.225	
TR								2	7		1		$6.08 \mathrm{e} \pm .04$
F334								2	2	2	3	1	$6.12 \mathrm{e} \pm .06$
CH					2		2	4	2				$6.00 \mathrm{~d} \pm .07$
AR	1					2	4	3					$5.92 \mathrm{c} \pm .09$
FJ	1	5	3	1									$5.74 \mathrm{a} \pm .04$
F334 x TR	2	3	7	7	7	4							$5.82 \mathrm{~b} \pm .07$
$\mathrm{FJ} \times \mathrm{CH}$	1	1				3	9	6	8	1	1		$6.00 \mathrm{~d} \pm .10$
F334 x AR				1	1			2	12	9	5		$6.09 \mathrm{e} \pm .08$
Pooled	5	9	10	9	10	9	15	19	31	12	10	1	$5.97 \pm .24$
Lysine (lys)	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0	4.1			
TR			2	4	2	1	1						$3.56 \mathrm{ab} \pm .12$
F334				1	4	3	2						$3.65 \mathrm{bc} \pm .10$
CH				3	2	2	3						$3.66 \mathrm{bc} \pm .13$
AR				2	3	3	2						$3.73 \mathrm{c} \pm .16$
FJ				1	2	2	4	1					$3.72 \mathrm{c} \pm .12$
F334 \times TR				1	10	5	8	3	2	1			$3.74 \mathrm{c} \pm .15$
FJ \times CH	2	4	10	6	5	1	1	1					$3.47 \mathrm{a} \pm .16$
F334 x AR	1	5	5	9	7	2		1					$3.49 \mathrm{a} \pm .14$
Pooled	3	9	17	27	35	19	21	6	2	1			$3.60 \pm .18$
Phenylalanine (Phe)	5.4	5.6	5.8	6.0	6.2	6.4	6.6						
TR		1	6	3									$5.85 \mathrm{ab} \pm .11$
F334			7	2	1								$5.93 \mathrm{~b} \pm .12$
CH				5	2	2	1						$6.17 \mathrm{c} \pm .22$
AR					4	4	2						$6.38 \mathrm{de} \pm .16$
FJ					1	6	3						$6.45 \mathrm{e} \pm .10$
F334 x TR				4	17	8	1						$6.23 \mathrm{~cd} \pm .15$
FJ \times CH	1	10	7	5	5	2							$5.87 \mathrm{~b} \pm .28$
F334 x AR	7	6	10	5		2							$5.74 \mathrm{a} \pm .26$
Pooled	8	17	30	24	30	24	7						$6.05 \pm .30$

${ }^{\text {a-f }}$ Means followed by same letter are not significantly different at the 5% level of probability.
g_{T} seeds from each of the parents and 30 seeds from each of the F_{2} 's were analyzed.
$\mathrm{h}_{\mathrm{TR}}=$ Tennessee Red; $\mathrm{CH}=$ Chico; $\mathrm{AR}=$ Argentine; $\mathrm{FJ}=$ Florida Jumbo.
analyzed. About 125 mg fat free peanut meal was hydrolyzed in 20 ml 6 N HCl for 15 hr at $110 \mathrm{C}, \mathrm{pH}$ adjusted to 2.0-2.2 with 12 N NaOH , diluted to 50 ml , centrifuged on a Beckman microfuge and analyzed (4). Amino acid analyses were performed by the ion exchange chromatography technique of Spackman, et al., (13), with a Durrum Model D-500 Amino Acid Analyzer using a 1.75 mm (internal diameter (ID) $\times 48 \mathrm{~cm}$ length column, packed with the Durrum high resolution cation exchanger (bead diameter, 8 ± 2 microns). Running time was 60 min including regeneration of column. Tryptophan data were not provided by the procedure.

Fatty acid composition was determined by gas liquid chromatography (GLC) according to the procedure reported by Worthington, et al., (7). One drop of peanut oil was transesterified with 5 ml methanol:benzene:sulfuric acid ($2: 1: 3$) at 80 C for 2 hr . The fatty acid composition of oil was calculated as \% total fatty acids. Duplicate samples were used for all amino acid and fatty acid analysis.

Means and standard deviations (s.d.) were calculated for each of the parental and F_{2} populations. The analysis of variance for each of the amino acids and fatty acids was based on the combined data of all parental and F_{2} populations (14). Broad sense heritabilities (H) for protein and oil contents were estimated using the formula of Mahmud and Kramer (15).

Correlation coefficients (r) were computed for all possible combinations of the 26 variables (18 amino acids + 8 fatty acids) for each of the parental and F_{2} populations.

RESULTS AND DISCUSSION

The levels of protein and oil content, and the corresponding frequency distributions of the 6 parents and F_{2} populations of 11 combinations of these parents, are shown in Tables II and III, respectively. Argentine was highest (30.18%) and Florunner lowest (24.60%) in protein content. Five F_{2} populations ($\mathrm{CH} \times \mathrm{AR}, \mathrm{AR} \times \mathrm{CH}, \mathrm{AR} \times \mathrm{FR}$, FJ xAR, and F334 xAR) had average protein contents that were between the 2 parents. Five other populations (CH x F334, CH x FJ, FJ x CH, F3 $34 \times$ TR, and FJ x F334) averaged higher than the parents and gave a transgressive segregation toward high protein content. Only $1 \mathrm{~F}_{2}$ population, $\mathrm{FR} \times \mathrm{CH}$, exhibited transgressive segregation toward low protein content. Among the $11 \mathrm{~F}_{2}$ populations, F334 \times AR showed the widest range of distribution, while both CH \times AR and its recirpocal cross gave the narrowest range of distribution.

The F334 and Florunner parents had the highest oil content, whereas, Florida Jumbo had the lowest. As with protein, oil content showed a wide range of distribution in most of the 6 cultivars examined (Table III). The oil content of F_{2} populations appeared to have a normal distribution in all crosses except $\mathrm{FJ} \times \mathrm{CH}, \mathrm{CH} \times \mathrm{FJ}$, and F334 x TR. The range for CH \times FJ and its reciprocal cross indicated transgressive segregation toward high oil content. The F_{2} population of $\mathrm{F} 334 \times$ TR on the other hand, showed transgressive segregation toward low oil content.

These results show that most parental and F_{2} populations were less variable in oil content than in protein content. From the F_{2} populations examined, the inheritance of protein and oil contents appeared to be controlled by quantitative genes. The differences in mean and frequency distribution indicated that numerous genes were operative in some parents and their F_{2} populations, but that only a few genes were involved in others.

Tables II and III show the heritabilities for protein and oil content, respectively, in all 11 crosses. Heritability estimates for protein content varied from 0-67. F334 x AR produced the highest value, while CH \times F334 showed no appreciable value for the protein heritability from parents to F_{2} progenies. Only 5 of the $11 F_{2}$ populations showed
aTen seeds from each of the parents and 30 seeds from each of the F_{2} 's were analyzed. $\mathrm{TR}=$ Tennessee $\mathrm{Red} ; \mathrm{CH}=\mathrm{Chico} ; \mathrm{AR}=\mathrm{Argentina} ; \mathrm{FJ}=\mathrm{Florida} \mathrm{Jumb}$.

[^1]TABLE VI
Frequency Distributions for 8 Fatty Acids in 5 Parents and $3 F_{2}$ Populations of Peanutsg

Population ${ }^{\text {h }}$		Class center (\%)										Mean \pm s.d.
16:0	7.50	8.50	9.50	10.50	11.50	12.50	13.50					
TR				5	5							$11.20 \mathrm{c} \pm .54$
F334			1		6	3						$11.60 \mathrm{c} \pm .98$
CH					3	2	5					$12.80 \mathrm{e} \pm .81$
AR						10						$12.58 \mathrm{de} \pm .22$
FJ	7	3										$7.94 \mathrm{a} \pm .46$
F334 x TR				7	20	3						$11.45 \mathrm{c} \pm .54$
FJ \times CH		1	12	13	4							$10.24 b \pm .79$
F334 x AR					15	13	2					$12.16 \mathrm{~d} \pm .67$
Pooled	7	4	13	25	53	31	7					$11.20 \pm .95$
18:0	1.90	2.30	2.70	3.10	3.50	3.90	4.30	4.70				
TR			2	5	2		1					$3.32 \mathrm{e} \pm .43$
F334	8	2										$2.00 \mathrm{a} \pm .16$
CH			2	8								$2.98 \mathrm{~d} \pm .17$
AR			1	4	5							$3.30 \mathrm{e} \pm .23$
FJ					3	4	2	1				$2.89 \mathrm{f} \pm .40$
F334 x TR	8	12	7	3								$2.41 \mathrm{~b} \pm .39$
FJxCH		7	22	1								$2.63 \mathrm{c} \pm .22$
F334 x AR	7	16	5	2								$2.29 \mathrm{~b} \pm .34$
Pooled	23	37	39	23	10	4	3	1				$2.86 \pm .79$
18:1	37.50	40.50	43.50	46.50	49.50	52.50	55.50	58.50	61.50	64.50	67.50	
TR		5	4	1								42.73bc ± 1.72
F334	8	2										37.63a ± 1.25
CH		6	4									$41.71 \mathrm{bc} \pm 1.49$
AR			9	1								$44.14 \mathrm{c} \pm 0.87$
FJ								1		5	4	$65.12 \mathrm{e} \pm 3.55$
F334 x TR	7	16	6	1								$40.92 \mathrm{~b} \pm 2.43$
FJ \times CH			1	5	11	4	4	4	1			$51.62 \mathrm{~d} \pm 4.55$
F334 x AR	6	10	13	1								$41.36 \mathrm{~b} \pm 2.47$
Pooled	21	39	37	9	11	4	4	5	1	5	4	45.72 ± 3.87
18:2	15.50	18.50	21.50	24.50	27.50	30.50	33.50	36.50	39.50	42.50		
TR							2	4	4			$35.95 \mathrm{de} \pm 1.87$
F334										10		$41.47 \mathrm{~g} \pm 0.38$
CH							2	8				$35.23 \mathrm{~cd} \pm 0.85$
AR						1	9					$33.31 \mathrm{c} \pm 0.86$
FJ	4	5	1									$17.33 \mathrm{a} \pm 2.77$
F334 x TR							1	6	16	7		$38.53 \mathrm{f} \pm 2.24$
FJ \times CH		1		7	4	11	6	1				$29.03 \mathrm{~b} \pm 3.75$
F334 x AR							1	14	12	3		$37.50 \mathrm{ef} \pm 1.93$
Pooled	4	6	1	7	4	12	21	33	32	30		33.55 ± 2.75

20:0	1.05	1.15	1.25	1.35	1.45	1.55	1.65	1.75	1.85		
TR				2	2	3	1	1	1		$1.55 \mathrm{c} \pm .16$
F334	1	5	3	1							$1.20 \mathrm{a} \pm .09$
CH				3	4	2	1				$1.46 \mathrm{~b} \pm .07$
AR					6	3					$1.51 \mathrm{bc} \pm .08$
FJ					1	2	4	2	1		$1.65 \mathrm{c} \pm .12$
F334 x TR	2	5	13	6	2	2					$1.28 \mathrm{a} \pm .12$
$\mathrm{FJ} \times \mathrm{CH}$	1	1	2	10	7	6	2	1			$1.44 \mathrm{~b} \pm .20$
F334 x AR	4	8	5	9	2	1	1				$1.27 \mathrm{a} \pm .16$
Pooled	8	19	23	31	24	19	10	4	2		$1.42 \pm .25$
20:1	0.65	0.75	0.85	0.95	1.05	1.15	1.25	1.35	1.45	1.55	
TR		1	3	1	4	1					. $95 \mathrm{bc} \pm .12$
F334				1		4	2	2	1		$1.21 \mathrm{~d} \pm .12$
CH			2	5	2	1					. $89 \mathrm{~b} \pm .05$
AR	2	4	4								$.75 \mathrm{a} \pm .07$
FJ	1	2	4	2	1						. $82 \mathrm{ab} \pm .10$
F334 x TR			4	1	5	6	7	2	1	4	$1.19 \mathrm{~d} \pm .21$
FJ $\times \mathrm{CH}$		1	5	8	10	3	1	1	1		$1.02 \mathrm{c} \pm .14$
F334 x AR			5	6	9	5		2	1		$1.06 \mathrm{c} \pm .17$
Pooled	3	8	23	24	31	20	12	7	4	4	$.98 \pm .37$
22:0	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60			
TR		1	1		4	2	2				$3.05 \mathrm{~cd} \pm .32$
F334				2	1	2	4	1			$3.22 \mathrm{de} \pm .27$
CH				1		2	5	2			$3.33 \mathrm{e} \pm .24$
AR					3	4	2	1			$3.24 \mathrm{de} \pm .24$
FJ	1	7	1	1							$2.42 \mathrm{a} \pm .30$
F334 x TR	2	3	4	9	8	3	1				$2.82 \mathrm{~b} \pm .31$
FJ \times CH	2	4	4	8	8	3	1				$2.80 \mathrm{~b} \pm .31$
F334 x AR	1	1	4	10	6	4	3	1			$2.94 \mathrm{bc} \pm .31$
Pooled	6	16	14	31	30	20	18	5			$2.98 \pm .46$
24:0	0.75	1.05	1.35	1.65	1.95	2.25					
TR		4	5	1							$1.27 \mathrm{bc} \pm .20$
F334			3	5	2						$1.65 d \pm .18$
CH			4	5		1					$1.62 \mathrm{~d} \pm .48$
AR			5	5							$1.18 \mathrm{ab} \pm .18$
FJ	4	6									$1.00 \mathrm{a} \pm .07$
F334 x TR	1	6	12	10	,						$1.39 \mathrm{c} \pm .25$
FJ $\times \mathrm{CH}$	2	14	13		1						$1.20 \mathrm{~b} \pm .21$
F334 x AR	1	5	11	12	1						$1.26 b \pm .26$
Pooled	8	35	53	38	5	1					$1.55 \pm .59$

${ }^{\text {a-f }}$ Means followed by same letter are not significantly different at the 5% level of probability. ${ }^{g}$ Ten seeds from each of the parents and 30 seeds from each of the F_{2} 's were analyzed.

TABLE VII
Correlation Between 8 Essential Amino Acids and Fat Free Peanut Meal of 5 Parents and $3 \mathrm{~F}_{2}$ Populations of Peanuts

Correlation between ${ }^{\text {a }}$	TR ${ }^{\text {c }}$	F334	$\mathrm{CH}^{\text {c }}$	$A R^{c}$	$\mathrm{FJC}^{\text {c }}$	F334 x TR	FJ \times CH	F334 x AR
1-2	-.63 ${ }^{\text {b }}$. 01	. 02	-. 25	-. 41	-. 57	-. 59	-. 06
1-3	. 63	-. 03	. 16	. 28	. 26	. 43	. 77	. 16
1-4	-. 09	. 54	-. 03	. 65	-. 41	. 11	. 45	. 53
1-5	. 62	-. 08	. 15	. 06	. 22	. 19	. 43	. 12
$1-6$. 06	-. 11	. 19	-. 18	-. 31	. 01	. 41	-. 00
1-7	. 36	. 03	. 14	. 22	. 56	. 48	-. 17	. 15
1-8	. 90	. 79	. 61	. 91	. 95	. 67	-. 07	. 62
2-3	-. 45	$-.81$	-. 25	-. 72	-. 61	-. 20	-. 53	-. 27
2-4	. 55	. 04	. 32	-. 32	. 58	. 26	-. 12	. 14
2-5	-. 51	-. 75	-. 17	-. 71	-. 65	-. 19	-. 41	-. 37
2-6	. 12	-. 38	. 12	-. 43	-. 36	-. 34	-. 44	-. 26
2-7	-. 67	-. 33	-. 04	. 04	-. 79	-. 62	. 18	-. 09
2-8	-. 69	-. 19	. 21	-. 36	-. 57	-. 59	. 10	-. 10
3-4	. 21	-. 10	-. 81	. 34	-. 50	-. 07	. 41	. 20
3-5	. 99	. 93	. 98	. 95	. 99	. 83	. 83	. 86
3-6	. 55	. 14	. 65	. 39	. 72	. 34	. 68	. 63
3-7	-. 01	. 41	-. 47	. 08	. 45	-. 06	-. 44	-65
3-8	. 81	. 32	-. 30	. 38	. 38	. 11	-. 36	-. 14
4-5	. 11	-. 26	-. 83	. 23	-. 50	-. 25	. 44	. 00
4-6	. 36	-. 49	. 67	-. 11	. 42	-. 56	. 23	. .06
4-7	-. 70	$-.23$. 18	. 16	. 57	. 08	-. 29	-. 26
4-8	-. 14	. 37	. 29	. 79	-. 42	. 25	. 34	. 21
5-6	. 51	. 33	. 62	. 60	. 77	. 46	. 78	. 71
5-7	. 08	. 22	-. 37	-. 14	. 46	-. 24	-. 67	-. 32
5-8	. 82	. 29	-. 20	. 18	. 35	. 05	-. 20	. 12
6.7	-. 69	-. 37	-. 59	-. 83	. 14	-. 27	-. 79	-. 55
6.8	. 07	-. 29	. .47	-. 25	. 17	-. 39	-. 48	-. 25
7.8	. 47	. 30	-. 74	. 38	. 65	. 68	. 40	. 68

${ }^{a_{1}}=$ Threonine; $2=$ cystine; $3=$ valine; $4 \approx$ methionine $; 5=$ isoleucine; $6=$ leucine; $7=$ phenalanine; $8=1 y s i n e$.
$\mathrm{b}_{\text {Significance }}$ for (parents) 8 d.f. 63 (5%), and for (F_{2} 's) 28 d.f. . 36 (5%).
${ }^{\mathrm{c}} \mathrm{TR}=$ Tennessee $\mathrm{Red} ; \mathrm{CH}=$ Chico; $\mathrm{AR}=$ Argentine $; \mathrm{FJ}=$ Florida Jumbo.
measurable values of heritability for oil content. These values were somewhat lower than those reported by Patil (16) and Martin (17).

Parents and F_{2} populations differed in the degree of correlation between protein and oil contents and ranged from nonsignificant to highly significant. All of the correlations were negative. Holley and Hammons (1) also pointed out that a recirpocal relationship between oil and protein did not occur in all strains of peanuts.

The statistical summary of the amino acids of fat free peanut meals of parents and F_{2} populations and their frequency distributions are shown in Tables IV and V. Mean and standard deviation varied significantly for each amino acid. Analysis of variance for each of the amino acids also showed that there were significant genetic differences among the combined populations of all parents and F_{2} 's. There were also differences in the degree of variability among the 18 amino acids. Cystine and methionine had the highest variability, while glutamic acid had the lowest.

Eight essential amino acids were selected for further examination of frequency distributions and resulting data are shown in Table IV. No attempt was made to examine the frequency distributions of the nonessential amino acids in this paper. Among the combined populations of all parents and F_{2} 's, Florida Jumbo was lowest in threonine, valine, isoleucine, and leucine, and highest in phenylalanine. Argentine was lowest for cystine and methionine, but relatively high in phenylalanine and lysine. F334 had the highest average in both threonine and leucine in all populations examined. With most of the essential amino acids, the frequency distributions of the F_{2} populations gave a wider range of variability than the parent populations. The F_{2} population of F334 x TR had a fairly normal distribution in both threonine and cystine, but transgressive segregations toward low values occurred for valine, isoleucine, and leucine, and a transgressive segregation toward high values for methionine, lysine, and phenylalanine. In FJ x CH and F334 x AR, the F_{2} populations showed that, except threo-
nine and cystine, there was a similar pattern of distribution in the 8 essential amino acids. Valine, methionine, and isoleucine exhibited a transgressive segregation toward high values, while both lysine and phenylalanine showed transgressive segregation toward low values. Leucine had a normal distribution in these $2 \mathrm{~F}_{2}$ populations.

The statistical summary of the fatty acid composition of parental and F_{2} populations and their frequency distributions are shown in Table VI. Analysis of variance for each of the fatty acids indicated that there was significant ($\mathrm{P}<0.05$) genetic difference among the combined populations of all parents and F_{2} 's. The means from all populations showed that Florida Jumbo was the lowest in 16:0, $18: 2,22: 0$, and $24: 0$, but highest in $18: 0,18: 1$, and $20: 0$, whereas, F334 was the lowest in 18:0, 18:1, and 20:0, but highest in 18:2, 20:0, and 24:0. Chico was the highest in $16: 0$ and $22: 0$. The oleic and linoleic acid content of Florida Jumbo and F334 showed the same pattern as those obtained earlier by Worthington (unpublished data, 1972). As with essential amino acids, most of the frequency distributions of the fatty acids of the F_{2} populations had a wider range of variability than their parents. Most of the F_{2} means of the 8 fatty acids were between the means of their respective parents. All $3 \mathrm{~F}_{2}$ populations of $16: 0$ and 24:0 appeared to have a normal distribution. The frequency distribution of 18:0 skewed toward the low range in the F_{2} populations, F334 xTR and F334xAR. The frequency distribution of $18: 2$, however, skewed toward the high range. $\mathrm{FJ} \times \mathrm{CH}$ appeared to have a normal distribution of these two fatty acids in the F_{2} populations. Transgressive segregations of the F_{2} populations were also detected in 20:0, 20:1, and 22:0. Results indicate that, in the F_{2} populations, each of the 8 fatty acids in peanuts was inherited quantitatively and controlled by multiple genes. The genetic system for controlling the amount of each fatty acid in peanuts does not appear as simple as has been reported in maize (18) and safflower (19-21). The results, however, suggested that peanuts had the capacity to give a

TABLE VIII
Correlation Between 8 Fatty Acids of Oil of 5 Parents and $3 \mathrm{~F}_{2}$ Populations of Peanuts

Correlation between ${ }^{\text {a }}$	TR ${ }^{\text {c }}$	F334	CH^{c}	AR^{c}	$\mathrm{FJ}^{\text {c }}$	F334 x TR	$\mathrm{FJ} \times \mathrm{CH}$	F334 \times AR
1-2	. $444^{\text {b }}$. 15	$-.14$. 19	. 38	. 13	. 15	-. 07
1-3	-. 81	-. 89	-.77	-. 01	-. 82	-. 51	-. 85	$-.50$
1-4	. 83	-.,08	.71	-. 18	. 78	. 40	. 82	. 20
1-5	-. 63	. 27	-. 08	-. 30	-. 12	-. 10	. 02	. 01
$1-6$	-. 44	-. 39	. 33	-. 31	-. 80	-. 35	-. 33	-. 03
1-7	-. 75	. 55	-. 28	. 02	-. 10	-. 35	. 24	-. 09
1-8	-. 77	-. 03	-. 03	-. 38	-. 89	-. 17	-. 29	-. 06
2-3	. 14	-. 22	. 45	-. 53	-. 46	-. 11	-. 22	. 65
$2 \cdot 4$	-. 35	-. 12	-. 26	. 43	. 29	. 09	. 18	-. 68
$2 \cdot 5$. 67	. 76	. 71	. 56	. 74	. 87	. 48	. 83
2-6	-. 12	-. 54	-. 12	. 40	-. 55	-. 87	-. 33	-. 88
2-7	. 56	. 20	-. 18	-. 38	-. 39	-. 47	. 09	-. 32
2-8	. 32	-. 58	-. 17	-. 59	-. 43	-. 61	-. 15	-. 78
3-4	-. 97	-. 27	-. 78	-. 87	-. 97	-. 97	-. 99	-. 87
3-5	. 62	-. 34	. 37	. 47	-. 22	-. 04	-. 17	. 42
3-6	. 28	. 18	-. 43	. 11	. 90	. 14	. 19	-. 58
3-7	. 37	-. 83	. .05	. 06	-. 13	. 11	-. 44	-. 24
3-8	. 49	. 07	-. 10	. 14	. 77	. 07	. 10	-. 51
4.5	. 77	-. 25	. 06	. 26	. 08	. 06	. 09	-. 49
4.6	-. 18	. 20	. 61	-. 27	-. 88	-. 12	-. 25	. 64
4-7	-. 49	. 36	-. 07	-. 45	. 20	-. 20	. 34	. 03
4-8	-. 52	-. 16	-. 33	-. 33	-. 74	-. 18	-. 15	. 47
5-6	. 17	-. 06	. 27	. 34	. 17	-. 65	. 45	-. 63
5-7	. 56	. 36	-. 08	. 23	-. 18	-. 41	. 37	-. 23
5-8	. 30	-. 59	-. 59	-. 07	-. 02	-. 58	. 01	-. 76
6-7	. 35	. 16	-. 14	. 69	. 07	. 49	. 32	. 23
6.8	. 17	. 17	-. 56	. 43	. 82	. 60	. 33	. 70
7-8	. 72	. 03	. 55	. 71	. 42	. 71	. 32	. 64

$a_{1}=16: 0 ; 2=18: 0 ; 3=18: 1 ; 4=18: 2 ; 5=20: 0 ; 6=20: 1 ; 7=22: 0 ; 8=24: 0$.

${ }^{c} \mathrm{TR}=$ Tennessee Red; $\mathrm{CH}=$ Chico; $\mathrm{AR}=$ Argentine $; \mathbf{F J}=$ Florida Jumbo.
transgressive segregation with some of the amino acids and fatty acids.

Correlations among 8 essential amino acids of fat free peanut meal of 5 parents and $3 \mathrm{~F}_{2}$ populations are summarized in Table VII. The correlation coefficients varied among the parental and F_{2} populations between any 2 amino acids and also among the paired amino acids within each of these populations. Valine-isoleucene, valine-leucine, and isoleucine-leucine had a positive correlation, and cys-tine-valine and cystine-isoleucine showed a negative correlation in all 5 parents and their F_{2} populations. Correlations for other pairs of a mino acids were inconsistent as to sign. The correlation between valine and isoleucine was the strongest ($\mathrm{r}=.83-.99$) among all pairs of the 8 essential amino acids examined.

Table VIII shows the correlation among 8 fatty acids of the oil of parent and F_{2} populations. High negative correlation coefficients between oleic and linoleic acid were obtained in all populations except F334, which had $\mathrm{r}=-.27$. This parent was low in 18:1 and high in 18:2. Among all correlation coefficients calculated for the 8 fatty acids of the 5 parents, only 7 pairs (16:0-18:1, 16:0-24:0, 18:0-20:0, 18:0-20:1, 18:1-18:2, and 18:2-24:0) had a coefficient with consistent sign. Six of 7 pairs (except 18:2-24:0) also appeared to have correlations in the F_{2} populations consistent in sign with their respective parents. The simple correlation coefficients between pairs of fatty acids in inbred lines and varieties of sunflower also showed that there was inconsistency in sign for some of the fatty acids (22).

Correlations between individual amino acids and fatty acids were also examined but most of the relationships were low and inconsistent.

ACKNOWLEDGMENTS

R.E. Worthington, D.R. Landes, J. Miller, and J.C. Elrod helped with sample and data analyses and R.O. Hammons assisted in the
preparation of this manuscript. Supplementary financial support was provided by the Georgia Agricultural Commodity Commission for Peanuts, and Best Foods-CPC International.

REFERENCES

1. Holley, K.T., and R.O. Hammons, Ga. Agr. Expt. Sta., Res. Bull. 32 (1968).
2. Young, C.T., and R.O. Hammons, Oleagineux 28:293 (1973).
3. Young, C.T., and Y.P. Tai, Agron. J. 66:439 (1974).
4. Young, C.T., G.R. Waller, and R.O. Hammons, JAOCS 50:521 (1973).
5. Chopra, A.K., and G.S. Sidhu, Br. J. Nutr. $21: 519$ (1967).
6. Worthington, R.E., and R.O. Hammons, Oleagineux 26:695 (1971).
7. Worthington, R.E., R.O. Hammons, and J.R. Allison, Agr. Food Chem. 20:727 (1972).
8. Tai, Y.P., Ph.D. dissertation, Oklahoma State University, Stillwater, Ok, 1972 , p. 93.
9. Tai, Y.P., J.S. Kirby, and R.S. Matlock, J. Amer. Peanut Res. Educ. Assoc. 4:207 (1972).
10. Amer. Oil Chemists' Society, Official and Tentative Methods, 1951, Method Ab-4-50.
11. Jones, D.B., USDA Circ. No. 183 (1931).
12. Jones, D.B., Proceedings of First Annual Meeting National Peanut Council, Pensacola, Florida, May 26, 1941, pp. 31-41.
13. Spackman, D.H., W.H. Stein, and S. Moore, Anal. Chem. 30:1190(1958).
14. Steel, R.G.D., and J.H. Torrie, Principles and Procedures of Statistics, McGraw-Hil Book Co., New York, N.Y., 1960, p. 112-115.
15. Mahmud, I., and H.H. Kramer, Agron. J. 43:605 (1951).
16. Patil, S.H., International symposium on use of isotopes and radiation in agriculture and animal husbandry research, Nuclear Res. Lab., Ind. Agr, Res. Inst., New Dehli, India, December 1971, pp. 154-163.
17. Martin, J.P., Oleagineux 22:673 (1967).
18. Poneleit, C.G., and D.E. Alexander, Science 147:1585 (1965).
19. Knowles, P.F., and A. Mutwakil, Econ. Bot. $17: 139$ (1963).
20. Knowles, P.F., and A.B. Hill, Crop. Sci. 4:406 (1964).
21. Ladd, S.L., and P.F. Knowles, Crop. Sci. 10:525 (1970).
22. Putt, E.D., and R.B. Carson, JAOCS 46:126 (1969).
23. Bailey, W.K., and R.O. Hammons, Crop Sci. 15:105 (1975).

[^0]: $\mathrm{a}_{\text {Advanced }}$ selections from breeding programs using infraspecific hybridization, and, therefore, not strict hypogaea botanical varieties.
 ${ }^{\text {b }}$ See Ref. 23.
 $\mathrm{c}_{\text {A }}$ large seeded, non-commercial peanut employed in breeding research.

[^1]: bSignificant difference among all (8) populations at the 5% level of probability.

